Forums » Discussions » 実際的-信頼的なMLS-C01模擬モード試験-試験の準備方法MLS-C01資格専門知識

gywudosu
Avatar

ユーザーのニーズによりよく応えるために、MLS-C01調査の質問では、ユーザーがプロのワンストップサービスを利用できるように、サービスシステムの完全なセットを設定しました。ユーザー向けのプレセールで無料デモを提供するだけでなく、ユーザーが購入できる3つのバージョンを選択できると同時に、MLS-C01トレーニング資料も24時間のアフターサービスを提供します。私たちのMLS-C01テストガイドの完璧なワンストップサービスは、あなたが選択を後悔することはないと信じており、あなたの時間、完全な勉強、効率的にMLS-C01試験に合格することができると信じています。

Amazon MLS-C01 認定試験の出題範囲:

トピック 出題範囲
トピック 1
  • 機械学習モデルの評価
  • ハイパーパラメータ最適化の実行

トピック 2
  • パフォーマンス、可用性、スケーラビリティ、復元力、フォールトトレランスのための機械学習ソリューションを構築する

トピック 3
  • 探索的データ分析2.1モデリング用のデータのサニタイズと準備

トピック 4
  • 特定の機械学習問題に適切なモデルを選択する

トピック 5
  • 機械学習の問題
  • 機械学習の実装と運用としてビジネス上の問題を組み立てる

トピック 6
  • 機械学習のためのデータの分析と視覚化

トピック 7
  • 機械学習ソリューションの導入と運用化
  • データ取り込みソリューションの特定と実装

トピック 8
  • 基本的なAWSセキュリティプラクティスを機械学習ソリューションに適用する

トピック 9
  • データ変換ソリューションの特定と実装
  • 特徴エンジニアリングの実行


>> MLS-C01模擬モード <<

MLS-C01資格専門知識 & MLS-C01サンプル問題集

チャンスはいつも準備がある人のために存在しています。IT業界で就職する前に、あなたはAmazonのMLS-C01試験に合格したら、あなたに満足させる仕事を探す準備をよくしました。AmazonのMLS-C01試験に合格しがたいですが、我々MogiExamの提供するAmazonのMLS-C01試験の資料を通して多くの人は試験に合格しました。あなたはその中の一員になりたいですか。我々の商品にあなたを助けさせましょう。

Amazon AWS Certified Machine Learning - Specialty 認定 MLS-C01 試験問題 (Q88-Q93):

質問 # 88
A machine learning specialist stores IoT soil sensor data in Amazon DynamoDB table and stores weather event data as JSON files in Amazon S3. The dataset in DynamoDB is 10 GB in size and the dataset in Amazon S3 is 5 GB in size. The specialist wants to train a model on this data to help predict soil moisture levels as a function of weather events using Amazon SageMaker.
Which solution will accomplish the necessary transformation to train the Amazon SageMaker model with the LEAST amount of administrative overhead?

  • A. Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output to an Amazon Redshift cluster.
  • B. Enable Amazon DynamoDB Streams on the sensor table. Write an AWS Lambda function that consumes the stream and appends the results to the existing weather files in Amazon S3.
  • C. Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output in CSV format to Amazon S3.
  • D. Launch an Amazon EMR cluster. Create an Apache Hive external table for the DynamoDB table and S3 data. Join the Hive tables and write the results out to Amazon S3.

正解:B
質問 # 89
A Machine Learning Specialist deployed a model that provides product recommendations on a company's website Initially, the model was performing very well and resulted in customers buying more products on average However within the past few months the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago Which method should the Specialist try to improve model performance?

  • A. The model needs to be completely re-engineered because it is unable to handle product inventory changes
  • B. The model should be periodically retrained using the original training data plus new data as product inventory changes
  • C. The model should be periodically retrained from scratch using the original data while adding a regularization term to handle product inventory changes
  • D. The model's hyperparameters should be periodically updated to prevent drift

正解:B
質問 # 90
An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen.
Which combination of algorithms would provide the appropriate insights? (Select TWO.)

  • A. The Random Cut Forest (RCF) algorithm
  • B. The Latent Dirichlet Allocation (LDA) algorithm
  • C. The principal component analysis (PCA) algorithm
  • D. The factorization machines (FM) algorithm
  • E. The k-means algorithm

正解:C、E 解説:
The PCA and K-means algorithms are useful in collection of data using census form.
質問 # 91
A Data Science team within a large company uses Amazon SageMaker notebooks to access data stored in Amazon S3 buckets. The IT Security team is concerned that internet-enabled notebook instances create a security vulnerability where malicious code running on the instances could compromise data privacy. The company mandates that all instances stay within a secured VPC with no internet access, and data communication traffic must stay within the AWS network.
How should the Data Science team configure the notebook instance placement to meet these requirements?

  • A. Associate the Amazon SageMaker notebook with a private subnet in a VPC. Place the Amazon SageMaker endpoint and S3 buckets within the same VPC.
  • B. Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has a NAT gateway and an associated security group allowing only outbound connections to Amazon S3 and Amazon SageMaker.
  • C. Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has S3 VPC endpoints and Amazon SageMaker VPC endpoints attached to it.
  • D. Associate the Amazon SageMaker notebook with a private subnet in a VPC. Use IAM policies to grant access to Amazon S3 and Amazon SageMaker.

正解:C 解説:
We must use the VPC endpoint (either Gateway Endpoint or Interface Endpoint)to comply with this requirement "Data communication traffic must stay within the AWS network".
https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-interface-endpoint.html
質問 # 92
A company has set up and deployed its machine learning (ML) model into production with an endpoint using Amazon SageMaker hosting services. The ML team has configured automatic scaling for its SageMaker instances to support workload changes. During testing, the team notices that additional instances are being launched before the new instances are ready. This behavior needs to change as soon as possible.
How can the ML team solve this issue?

  • A. Increase the cooldown period for the scale-out activity.
  • B. Replace the current endpoint with a multi-model endpoint using SageMaker.
  • C. Decrease the cooldown period for the scale-in activity. Increase the configured maximum capacity of instances.
  • D. Set up Amazon API Gateway and AWS Lambda to trigger the SageMaker inference endpoint.

正解:C
質問 # 93
...... 当社は、お客様に信頼できる学習プラットフォームを提供できることを嬉しく思います。 MLS-C01クイズトレントは、急速な発展の世界のさまざまな分野の多くの専門家や教授によって設計されました。同時に、MLS-C01試験問題集に質問がある場合は、プロの個人が短時間であなたの質問に答えることができます。つまり、MLS-C01クイズ準備を購入することを選択した場合、当社が提供する権威ある学習プラットフォームを楽しむことができます。最新のMLS-C01試験トレントが最適な選択になると確信しています。さらに重要なことは、最新のMLS-C01試験トレントのデモを無料で入手できることです。 MLS-C01資格専門知識: https://www.mogiexam.com/MLS-C01-exam.html