Forums » Discussions » 值得信賴的Associate-Developer-Apache-Spark考古题推薦|第一次嘗試輕鬆學習並通過考試並且有效的Associate-Developer-Apache-Spark:Databricks Certified Associate Developer for Apache Spark 3.0 Exam

gywudosu
Avatar

我們NewDumps為你在真實的環境中找到真正的Databricks的Associate-Developer-Apache-Spark考試準備過程,如果你是初學者和想提高你的教育知識或專業技能,NewDumps Databricks的Associate-Developer-Apache-Spark考試考古題將提供給你,一步步實現你的願望,你有任何關於考試的問題,我們NewDumps Databricks的Associate-Developer-Apache-Spark幫你解決,在一年之內,我們提供免費的更新,請你多關注一下我們網站。 NewDumps提供高品質的最佳學習資料,讓通過Databricks Associate-Developer-Apache-Spark考試從未如此快速、便宜、和簡單。有了最新詳細的題庫和答案,為您的Associate-Developer-Apache-Spark考試做好充分的準備,我們將保證您在考試中取得成功。在購買前,您還可以下載我們提供的Associate-Developer-Apache-Spark免費DEMO來試用,這是非常有效的學習資料。通過客戶的完全信任,我們為考生提供真實有效的訓練,幫助大家在第一次Databricks Associate-Developer-Apache-Spark考試中順利通過。 >> Associate-Developer-Apache-Spark考古题推薦 <<

Databricks Associate-Developer-Apache-Spark證照 - Associate-Developer-Apache-Spark學習資料

NewDumps的IT專家團隊利用他們的經驗和知識不斷的提升考試培訓材料的品質,來滿足每位考生的需求,保證考生第一次參加Databricks Associate-Developer-Apache-Spark認證考試順利的通過,你們通過購買NewDumps的產品總是能夠更快得到更新更準確的考試相關資訊,NewDumps的產品的覆蓋面很大很廣,可以為很多參加IT認證考試的考生提供方便,而且準確率100%,能讓你安心的去參加考試,並通過獲得認證。

最新的 Databricks Certification Associate-Developer-Apache-Spark 免費考試真題 (Q143-Q148):

問題 #143
Which of the following describes properties of a shuffle?

  • A. A shuffle is one of many actions in Spark.
  • B. Shuffles involve only single partitions.
  • C. Shuffles belong to a class known as "full transformations".
  • D. Operations involving shuffles are never evaluated lazily.
  • E. In a shuffle, Spark writes data to disk.

答案:E 解題說明:
Explanation
In a shuffle, Spark writes data to disk.
Correct! Spark's architecture dictates that intermediate results during a shuffle are written to disk.
A shuffle is one of many actions in Spark.
Incorrect. A shuffle is a transformation, but not an action.
Shuffles involve only single partitions.
No, shuffles involve multiple partitions. During a shuffle, Spark generates output partitions from multiple input partitions.
Operations involving shuffles are never evaluated lazily.
Wrong. A shuffle is a costly operation and Spark will evaluate it as lazily as other transformations. This is, until a subsequent action triggers its evaluation.
Shuffles belong to a class known as "full transformations".
Not quite. Shuffles belong to a class known as "wide transformations". "Full transformation" is not a relevant term in Spark.
More info: Spark - The Definitive Guide, Chapter 2 and Spark: disk I/O on stage boundaries explanation - Stack Overflow
問題 #144
Which of the following code blocks performs an inner join of DataFrames transactionsDf and itemsDf on columns productId and itemId, respectively, excluding columns value and storeId from DataFrame transactionsDf and column attributes from DataFrame itemsDf?

  • A. 1.transactionsDf <br />2. .drop(col('value'), col('storeId')) <br />3. .join(itemsDf.drop(col('attributes')), col('productId')==col('itemId'))
  • B. transactionsDf.drop('value', 'storeId').join(itemsDf.select('attributes'), transactionsDf.productId==itemsDf.itemId)
  • C. 1.transactionsDf.createOrReplaceTempView('transactionsDf')
    2.itemsDf.createOrReplaceTempView('itemsDf')
    3.
    4.statement = """
    5.SELECT * FROM transactionsDf
    6.INNER JOIN itemsDf
    7.ON transactionsDf.productId==itemsDf.itemId
    8."""
    9.spark.sql(statement).drop("value", "storeId", "attributes")
  • D. 1.transactionsDf.createOrReplaceTempView('transactionsDf')
    2.itemsDf.createOrReplaceTempView('itemsDf')
    3.
    4.spark.sql("SELECT -value, -storeId FROM transactionsDf INNER JOIN itemsDf ON productId==itemId").drop("attributes")
  • E. transactionsDf.drop("value", "storeId").join(itemsDf.drop("attributes"),
    "transactionsDf.productId==itemsDf.itemId")

答案:C 解題說明:
Explanation
This question offers you a wide variety of answers for a seemingly simple question. However, this variety reflects the variety of ways that one can express a join in PySpark. You need to understand some SQL syntax to get to the correct answer here.
transactionsDf.createOrReplaceTempView('transactionsDf')
itemsDf.createOrReplaceTempView('itemsDf')
statement = """
SELECT * FROM transactionsDf
INNER JOIN itemsDf
ON transactionsDf.productId==itemsDf.itemId
"""
spark.sql(statement).drop("value", "storeId", "attributes")
Correct - this answer uses SQL correctly to perform the inner join and afterwards drops the unwanted columns. This is totally fine. If you are unfamiliar with the triple-quote """ in Python: This allows you to express strings as multiple lines.
transactionsDf <br />drop(col('value'), col('storeId')) <br />join(itemsDf.drop(col('attributes')), col('productId')==col('itemId'))
No, this answer option is a trap, since DataFrame.drop() does not accept a list of Column objects. You could use transactionsDf.drop('value', 'storeId') instead.
transactionsDf.drop("value", "storeId").join(itemsDf.drop("attributes"),
"transactionsDf.productId==itemsDf.itemId")
Incorrect - Spark does not evaluate "transactionsDf.productId==itemsDf.itemId" as a valid join expression.
This would work if it would not be a string.
transactionsDf.drop('value', 'storeId').join(itemsDf.select('attributes'), transactionsDf.productId==itemsDf.itemId) Wrong, this statement incorrectly uses itemsDf.select instead of itemsDf.drop.
transactionsDf.createOrReplaceTempView('transactionsDf')
itemsDf.createOrReplaceTempView('itemsDf')
spark.sql("SELECT -value, -storeId FROM transactionsDf INNER JOIN itemsDf ON productId==itemId").drop("attributes") No, here the SQL expression syntax is incorrect. Simply specifying -columnName does not drop a column.
More info: pyspark.sql.DataFrame.join - PySpark 3.1.2 documentation
Static notebook | Dynamic notebook: See test 3
問題 #145
Which of the following describes slots?

  • A. Slots are dynamically created and destroyed in accordance with an executor's workload.
  • B. A slot is always limited to a single core.
    Slots are the communication interface for executors and are used for receiving commands and sending results to the driver.
  • C. To optimize I/O performance, Spark stores data on disk in multiple slots.
  • D. A Java Virtual Machine (JVM) working as an executor can be considered as a pool of slots for task execution.

答案:D 解題說明:
Explanation
Slots are the communication interface for executors and are used for receiving commands and sending results to the driver.
Wrong, executors communicate with the driver directly.
Slots are dynamically created and destroyed in accordance with an executor's workload.
No, Spark does not actively create and destroy slots in accordance with the workload. Per executor, slots are made available in accordance with how many cores per executor (property spark.executor.cores) and how many CPUs per task (property spark.task.cpus) the Spark configuration calls for.
A slot is always limited to a single core.
No, a slot can span multiple cores. If a task would require multiple cores, it would have to be executed through a slot that spans multiple cores.
In Spark documentation, "core" is often used interchangeably with "thread", although "thread" is the more accurate word. A single physical core may be able to make multiple threads available. So, it is better to say that a slot can span multiple threads.
To optimize I/O performance, Spark stores data on disk in multiple slots.
No - Spark stores data on disk in multiple partitions, not slots.
More info: Spark Architecture | Distributed Systems Architecture
問題 #146
The code block shown below should return a DataFrame with columns transactionsId, predError, value, and f from DataFrame transactionsDf. Choose the answer that correctly fills the blanks in the code block to accomplish this.
transactionsDf.1(2)

  • A. 1. select
    2. "transactionId, predError, value, f"
  • B. 1. select
    2. ["transactionId", "predError", "value", "f"]
  • C. 1. filter
    2. "transactionId", "predError", "value", "f"
  • D. 1. where
    2. col("transactionId"), col("predError"), col("value"), col("f")
  • E. 1. select
    2. col(["transactionId", "predError", "value", "f"])

答案:B 解題說明:
Explanation
Correct code block:
transactionsDf.select(["transactionId", "predError", "value", "f"])
The DataFrame.select returns specific columns from the DataFrame and accepts a list as its only argument.
Thus, this is the correct choice here. The option using col(["transactionId", "predError",
"value", "f"]) is invalid, since inside col(), one can only pass a single column name, not a list. Likewise, all columns being specified in a single string like "transactionId, predError, value, f" is not valid syntax.
filter and where filter rows based on conditions, they do not control which columns to return.
Static notebook | Dynamic notebook: See test 2
問題 #147
The code block displayed below contains an error. The code block is intended to return all columns of DataFrame transactionsDf except for columns predError, productId, and value. Find the error.
Excerpt of DataFrame transactionsDf:
transactionsDf.select(~col("predError"), ~col("productId"), ~col("value"))

  • A. The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value wrapped in the col operator so they should be expressed like drop(col(predError), col(productId), col(value)).
  • B. The select operator should be replaced by the drop operator.
  • C. The select operator should be replaced by the drop operator and the arguments to the drop operator should be column names predError, productId and value as strings.
    (Correct)
  • D. The select operator should be replaced with the deselect operator.
  • E. The column names in the select operator should not be strings and wrapped in the col operator, so they should be expressed like select(~col(predError), ~col(productId), ~col(value)).

答案:C 解題說明:
Explanation
Correct code block:
transactionsDf.drop("predError", "productId", "value")
Static notebook | Dynamic notebook: See test 1
問題 #148
...... NewDumps 擬真試題覆蓋範圍可以達到近98%,含蓋PDF格式。成功的幫助你在短時間內通過 Associate-Developer-Apache-Spark 考試,取得 Databricks 認證。我們的 Associate-Developer-Apache-Spark 擬真試題已經被很多考生使用,并得到了眾多的好評。而且現在購買還有機會贈送打折碼哦。作為臺灣地區最專業的IT認證題庫提供商,我們對所有購買 Associate-Developer-Apache-Spark 題庫的客戶提供跟蹤服務,在您購買後享受半年的免費升級考題服務。 Associate-Developer-Apache-Spark證照: https://www.newdumpspdf.com/Associate-Developer-Apache-Spark-exam-new-dumps.html 利用Databricks的Associate-Developer-Apache-Spark考古題,您將達到你的目的,得到最佳的效果,給您帶來無限大的利益,在您以后的IT行業道路上可以走的更遠,通過考試順利,而本網站可以為您提供一個明確的和特殊的解決方案,提供詳細的 Databricks Databricks Certified Associate Developer for Apache Spark 3.0 Exam - Associate-Developer-Apache-Spark 考試重點的問題和答案,但是,這是真的,當您對我們的Databricks Associate-Developer-Apache-Spark考古題感到滿意的時候,趕快購買吧,付款之后,無需等待,你可以立刻獲得你所購買的Associate-Developer-Apache-Spark考古題,Databricks Associate-Developer-Apache-Spark考古题推薦 思科提供了以上三個壹般性認證等級,它們所代表的專業水平逐級上升:助理工程師、資深工程師和專家(CCIE),如果你想在IT行業擁有更好的發展,擁有高端的技術水準,Databricks Associate-Developer-Apache-Spark是確保你獲得夢想工作的唯一選擇,為了實現這一夢想,趕快行動吧! 壹個大男人噴那麽多香水幹什麽,至於有沒有通過引日宮的考驗,利用Databricks的Associate-Developer-Apache-Spark考古題,您將達到你的目的,得到最佳的效果,給您帶來無限大的利益,在您以后的IT行業道路上可以走的更遠,通過考試順利,而本網站可以為您提供一個明確的和特殊的解決方案,提供詳細的 Databricks Databricks Certified Associate Developer for Apache Spark 3.0 Exam - Associate-Developer-Apache-Spark 考試重點的問題和答案。

最新的Associate-Developer-Apache-Spark考古题推薦&認證考試資格材料和正確的Associate-Developer-Apache-Spark證照

但是,這是真的,當您對我們的Databricks Associate-Developer-Apache-Spark考古題感到滿意的時候,趕快購買吧,付款之后,無需等待,你可以立刻獲得你所購買的Associate-Developer-Apache-Spark考古題。